

Математика для школьников 7 — 11 класса (заочный тур) Решение задачи 4. Ребус

1. Запишем уравнение относительно к:

$$\begin{aligned} Td_{3\mathbf{k}} + I_{\mathbf{k}+\mathbf{1}} &= S_{3\mathbf{k}} + S_{6\mathbf{k}-\mathbf{1}} \\ ((3\mathbf{k})^3 + 3(3\mathbf{k})^2 + 2(3\mathbf{k}))/6 + (10(\mathbf{k}+1)^3 - 15(\mathbf{k}+1)^2 + 11(\mathbf{k}+1) - 3)/3 &= (3\mathbf{k})^2 + (6\mathbf{k}-1)^2 \\ 47\mathbf{k}^3 - 213\mathbf{k}^2 + 100\mathbf{k} &= 0 \end{aligned}$$

Поскольку $\mathbf{k} \neq 0$, то $47\mathbf{k}^2 - 213\mathbf{k} + 100 = 0$ и $\mathbf{D} = 26569$, $\mathbf{k} = 4$.

Тогда число шариков в наборе $(3.4)^2 + (6.4 - 1)^2 = 673$.

Поскольку все три набора одинаковы, то всего шариков 673.3 = 2019.

2.
$$T_x = 673 - T_{12} = 673 - 78 = 595$$
.

В то же время $T_x = x(x + 1)/2$

$$x^2 + x - 1190 = 0$$

D = 4761, $x = 34$.

Так как 34 > 12, ответом на вопрос будет: <u>34</u>.

3.
$$Td_{12} = 364$$
, $I_5 = 309$, $S_{12} = 144$, $S_{23} = 529$, $T_{12} = 78$, $T_{34} = 595$.