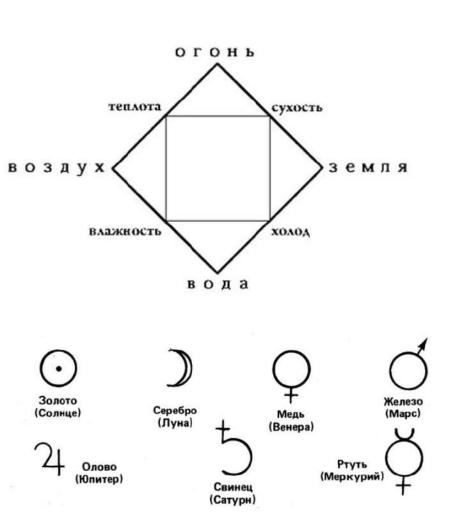
Образовательные материалы Наноолимпиады

Лекция: к 150 годовщине Периодической таблицы Д.И.Менделеева

-NANO > enanos.nanometer.ru

Москва 2019



Периодическая Таблица Элементов Д.И.Менделеева и наномир (часть 1)

E.A.Гудилин goodilin@yandex.ru

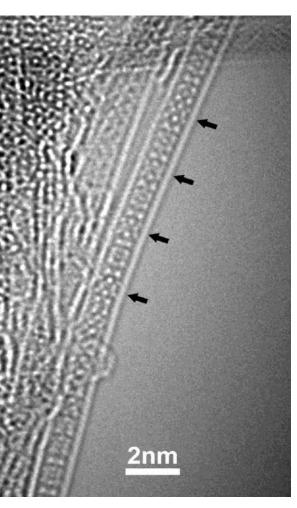
Элементы - стихии

Кадр из мультфильма про Аватара

Атомы Демокрита

«Атом» (греч.) - «неделимый». Непрерывная материя состоит из множества мельчайших и поэтому невидимых глазом частиц: древнегреческий философ Демокрит (V век до н. э.).

Представим, что у нас есть самый острый в мире нож. Берем любой материальный объект и разрезаем его пополам, затем одну из получившихся половинок также разрезаем пополам, затем разрезаем пополам одну из получившихся четвертинок и так далее. Рано или поздно, утверждал он, мы получим частицу столь мелкую, что дальнейшему делению на две она не поддается. Это и будет неделимый атом материи. По представлениям Демокрита атомы были вечными, неизменными и неделимыми. Изменения во Вселенной происходили исключительно из-за изменений в связях между атомами, но не в них самих.

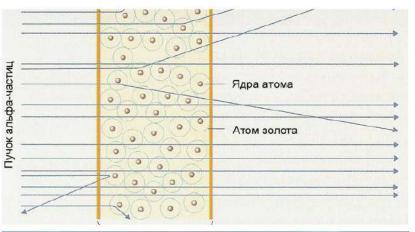


Атомы есть!

Сканирующая Зондовая Микроскопия

Просвечивающая Электронная Микроскопия

Ионная Микроскопия


Атом: электроны

- УІХ век, феномен катодных лучей: герметичная стеклянная трубка, заполненную разреженным газом с катодом (-) и анодом (+). При подаче высокого напряжения разреженный газ в трубке начинал светиться, это свечение приписывали катодным лучам.
- Катодные лучи представляют волновые возмущения невидимого эфира или заряженных молекул газа? В 1897 году английский физик Дж. Дж. Томсон показал, что: (1) катодные лучи отклоняются в магнитном поле в отсутствие электрического; (2) катодные лучи отклоняются в электрическом поле в отсутствие магнитного; и (3) при одновременном действии электрического и магнитного полей сбалансированной интенсивности, ориентированных в направлениях, вызывающих по отдельности отклонения в противоположные стороны, катодные лучи распространяются прямолинейно, то есть действие двух полей взаимно уравновешивается. Так ведут себя отрицательно заряженные электроны.

Атом: ядра (опыт Резерфорда)

В 1911 г. Эрнесу Резерфорд провел эксперимент, используя свинцовый ящик с узкой прорезью, внутрь которого был помещен радиоактивный материал, и мишень из тончайшей золотой фольги. После столкновения с атомами фольги альфачастицы продолжали свой путь и попадали на люминесцентный экран, установленный позади мишени, на котором при попадании на него альфа-частиц регистрировались вспышки. По ним экспериментатор мог судить, в каком количестве и насколько альфачастицы отклоняются от направления прямолинейного движения в результате столкновений с атомами фольги. Обнаружено, что большинство частиц проникало сквозь золото, но была и небольшая доля альфа – частиц, которая буквально отскакивала от мишени обратно, назад, как будто они налетели на что - то очень маленькое и очень тяжелое («ядро»).

Атом – химически неделимая электронейтральная частица

Атом состоит из <u>атомного ядра</u> и <u>электронов</u> Атомное ядро образовано <u>нуклонами</u> – протонами и нейтронами

Частица	Символ	Масса в а.е.м.	Относительная масса	Относительный заряд
Протон	¹ ₁ p	1.0073	1	+1
Нейтрон	¹ ₀ n	1.0087	1.0014	0
Электрон	e-	0.00055	0.00054	– 1

* Масса протона: 1.673 10⁻²⁷ кг

** Элементарный заряд: 1.602 10⁻¹⁹ Кл

Атомное ядро характеризуется массовым числом

A = Z + N Z – число протонов (заряд)

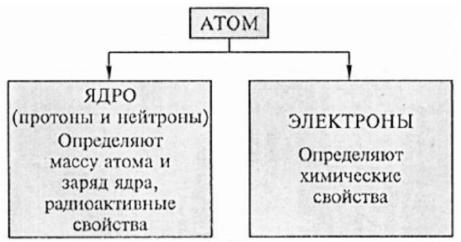
N – число нейтронов

А – число нуклонов (массовое число)

Атомы с разными А, но одинаковыми Z называются изотопами

Примеры изотопов: 10B, 11B, 12C, 13C, 14C, 121Sb, 123Sb, 235U, 238U, 239U

Изотопно чистые элементы: ¹⁹F, ²⁷AI, ³¹P, ⁵⁵Mn, ¹⁹⁷Au, ²⁰⁹Ві


Ядерные реакции

Типы радиоактивного распада

Тип распада	Испускаемая частица	Процесс в ядре	Пример	Образующийся элемент
α	α-частица — ядро атома гелия ₂ ⁴ Не	Потеря ядром α-частицы	$^{226}_{88}\text{Ra} \rightarrow ^{222}_{86}\text{Rn} + ^{4}_{2}\text{He}$	Заряд ядра мень- ше на 2, массо- вое число мень- ше на 4
β-	Электрон (е-)	${}_{0}^{1}n \rightarrow {}_{1}^{1}p + e^{-} + \widetilde{\mathbf{v}}^{*}$	${}^{14}_{6}\text{C} \rightarrow {}^{14}_{7}\text{N} + e^{-}$	Заряд ядра боль- ше на 1, массо- вое число то же
β+	Позитрон (е+)	${}_{0}^{1}n \rightarrow {}_{1}^{1}p + e^{+} + v^{*}$	$^{38}_{19}\text{K} \rightarrow ^{38}_{18}\text{Ar} + e^{+}$	Заряд ядра мень- ше на 1, массо- вое число то же
К-захват	Захват ядром электрона	${}_{1}^{1}p + e^{-} \rightarrow {}_{0}^{1}n$	$_{4}^{7}$ Ra + $e^{-} \rightarrow _{3}^{7}$ Li	Заряд ядра мень- ше на 1, массо- вое число то же
Υ	Электромагнитное излучение высокой энергии	Переход ядра на уровень с мень- шей энергией	Обычно сопро- вождает другие виды распада	Не вызывает из- менения в строе- нии ядра

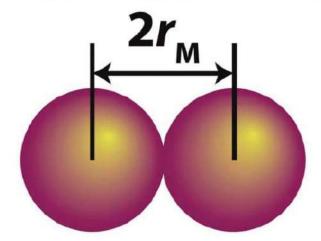
^{*} $\tilde{\mathbf{v}}$, \mathbf{v} — антинейтрино и нейтрино — элементарные частицы, не имеющие заряда и массы покоя и отличающиеся спином.

Атомы становятся веществом

Все живое и неживое – продукт взаимодейстия путем образования химических связей

Химическая связь – это совокупность сил, удерживающих вместе два или несколько атомов или ионов.

Химическая связь – это результат одновременного действия притяжения и отталкивания сближающихся атомов


Притяжение — а) электростатическое взаимодействие между противоположно заряженными ионами или частичными (эффективными) зарядами, б) электронное взаимодействие с образованием связывающих орбиталей, в) дисперсионные (дипольные) силы.

Отталкивание – а) электростатическое взаимодействие одноименно заряженных ионов или частичных зарядов, б) электронное взаимодействие замкнутых оболочек, в) электростатическое отталкивание сблизившихся ядер.

Характеристические свойства атомов

1. Орбитальный радиус атома га

Размер электронного облака атома с учетом взаимодействий электронов между собой и с ядром

Потенциал ионизации І

$$A_{ras} = A^{+}_{ras} + e^{-}$$
 I_{1} $A^{+}_{ras} = A^{2+}_{ras} + e^{-}$ I_{2}

$$I_{1} < I_{2} < I_{3} < ... < I_{n}$$

Сродство к электрону А 3.

$$A_{ra3} + e^{-} = A_{ra3}^{-}$$

A_e 4. Магнитный момент µ_{эфф}

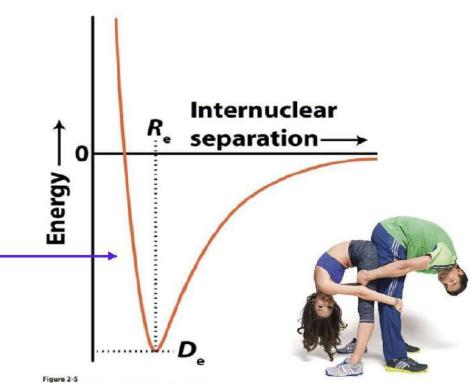
5. Электроотрицательность χ

$$\sqrt{S(S+1)} = \sqrt{n(n+2)}$$

Мера смещения электронной плотности при взаимодействии с другим атомом.

Шкалы: Полинга χ_P , Олреда-Рохова χ_{AR} , Малликена χ_M

$$\chi_{\rm M} = \frac{1}{2}(I_1 + A_{\rm e})$$


Параметры химической связи

d

- 1. Длина связи
- 2. Валентный угол
- 3. Энергия связи E = -D

Оптимальная длина связи и потенциальная энергия молекулы

Shriver & Atkins Inorganic Chemistry, Fourth Edition @ 2006 by D. F. Shriver, P. W. Atkins, T.L. Overton, J. P. Rourke, M. T. Weller, and F. A. Armstrong

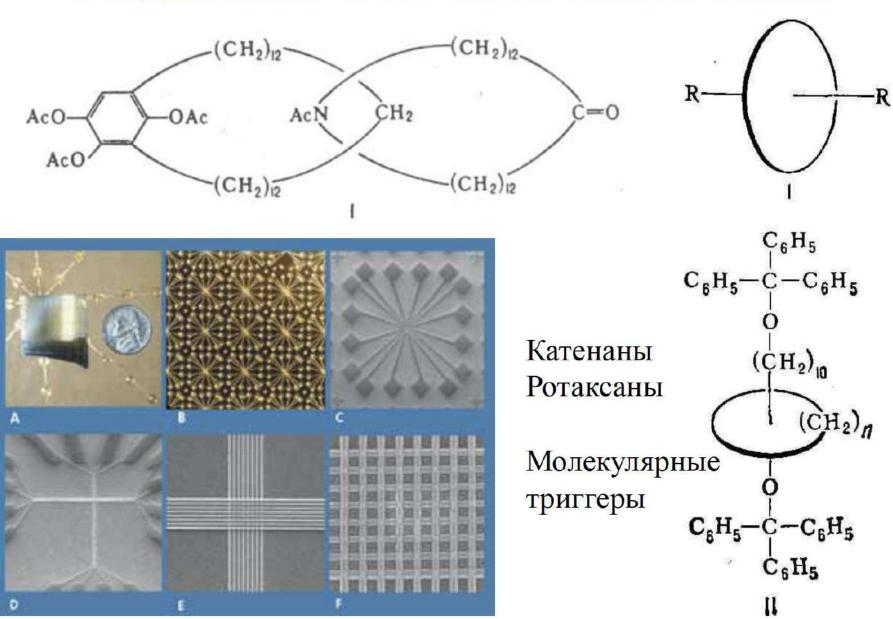
Силы, объединяющие атомы в молекулы

1. Электростатические взаимодействия:

взаимодействия зарядов

2. Ковалентные взаимодействия:

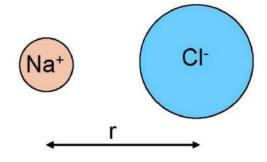
перераспределение электронной плотности


3. Дипольное взаимодействие:

ван-дер-ваальсовы силы

1 — Ионная связь

3 — Ван-дер-ваальсова связь


Соединения «без» химической связи

Ионная связь

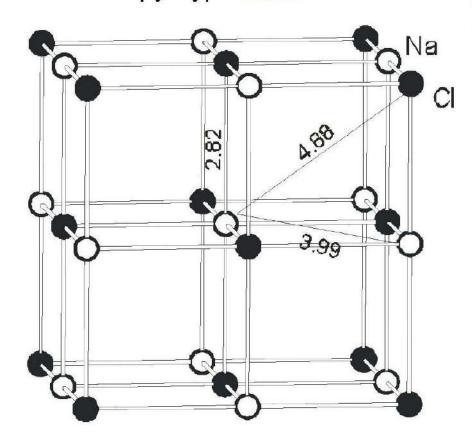
Ионная связь это взаимодействие противоположных зарядов

$$Na - e^{-} = Na^{+}$$
 Оболочки $CI + e^{-} = CI^{-}$ инертных газов

Характеристики ионной связи:

$$E = (|Z_+| \cdot |Z_-| \cdot e^2)/r$$

- 1) Ненаправленность
- 2) Недеформируемость электронных оболочек
- 3) Значимость кристаллического строения:


$$\mathsf{E}_{\mathsf{KPUCT}} = \mathsf{A} \cdot (|\mathsf{Z}_+| \cdot |\mathsf{Z}_-| \cdot \mathsf{e}^2)/\mathsf{r}$$

А – константа Маделунга

Константа Маделунга

Кристаллическая структура NaCl

Константа Маделунга зависит только от взаимного расположения атомов в кристаллической структуре

Величины кон	станты	маде	лунга
--------------	--------	------	-------

Состав	Α	К.Ч.
CsCl	1.763	8:8
CaF ₂	2.519	8:4
NaCl	1.748	6:6
TiO ₂	2.408	6:3
ZnS(s)	1.638	4:4
ZnS(w)	1.641	4:4

Окислитель (Ox) – частица, которая в ходе OBP приобретает электроны

Восстановитель (Red) – частица, которая в ходе OBP отдает электроны.

Восстановление – процесс, в ходе которого окислитель приобретает электроны и переходит в сопряженную восстановленную форму.

Окисление – процесс, в ходе которого восстановитель *отдает* электроны и переходит в сопряженную окисленную форму.

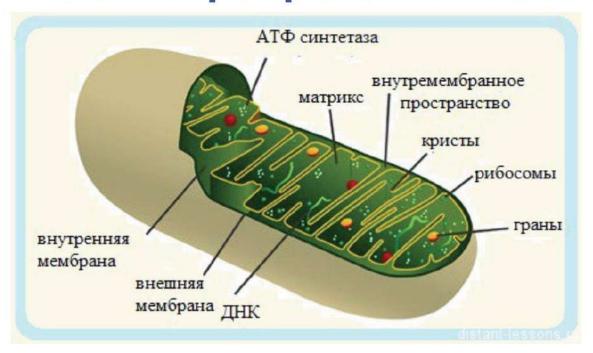
В любой ОВР всегда принимают участие **две пары** конкурирующих за электроны сопряженных окислителей и восстановителей (редокс - пары).

-	Z
C	
(υ
ŀ	_
	2
C	
(3
	Z
5	2
0	5
(U
E	5
5	Z
()
•	

Полуреакция восстановления		
$F_2(g) + 2e^-$	\longrightarrow 2 F ⁻ (aq)	2.87
$H_2O_2(aq) + 2 H^+(aq) + 2 e^-$	$\longrightarrow 2 H_2O(l)$	1.78
$MnO_4^-(aq) + 8 H^+(aq) + 5 e^-$	\longrightarrow Mn ²⁺ (aq) + 4 H ₂ O(l)	1.51
$Cl_2(g) + 2e^-$	\longrightarrow 2 Cl ⁻ (aq)	1.36
$Cr_2O_7^{2-}(aq) + 14 H^+(aq) + 6 e^-$	\longrightarrow 2 Cr ³⁺ (aq) + 7 H ₂ O(l)	1.33
$O_2(g) + 4 H^+(aq) + 4 e^-$	\longrightarrow 2 H ₂ O(l)	1.23
$Br_2(l) + 2 e^-$	\longrightarrow 2 Br ⁻ (aq)	1.09
$Ag^+(aq) + e^-$	\longrightarrow Ag(s)	0.80
$Fe^{3+}(aq) + e^{-}$	\longrightarrow Fe ²⁺ (aq)	0.77
$O_2(g) + 2 H^+(aq) + 2 e^-$	\longrightarrow H ₂ O ₂ (aq)	0.70
$I_2(s) + 2 e^-$	→ 2 I ⁻ (<i>aq</i>)	0.54
$O_2(g) + 2 H_2O(l) + 4 e^-$	\longrightarrow 4 OH ⁻ (aq)	0.40
$Cu^{2+}(aq) + 2e^{-}$	$\longrightarrow Cu(s)$	0.34
$Sn^{4+}(aq) + 2e^{-}$	\longrightarrow Sn ²⁺ (aq)	0.15
$2 H^{+}(aq) + 2 e^{-}$	$\longrightarrow H_2(g)$	0
$Pb^{2+}(aq) + 2e^{-}$	$\longrightarrow Pb(s)$	-0.13
$Ni^{2+}(aq) + 2e^{-}$	\longrightarrow Ni(s)	-0.26
$Cd^{2+}(aq) + 2e^{-}$	$\longrightarrow Cd(s)$	-0.40
$Fe^{2+}(aq) + 2e^{-}$	\longrightarrow Fe(s)	-0.45
$Zn^{2+}(aq) + 2e^{-}$	\longrightarrow Zn(s)	-0.76
$2 H_2O(l) + 2 e^-$	\longrightarrow H ₂ (g) + 2 OH ⁻ (aq)	-0.83
$Al^{3+}(aq) + 3e^{-}$	\longrightarrow Al(s)	-1.66
$Mg^{2+}(aq) + 2e^{-}$	\longrightarrow Mg(s)	-2.37
$Na^+(aq) + e^-$	\longrightarrow Na(s)	-2.71
$Li^+(aq) + e^-$	\longrightarrow Li(s)	-3.04

Электромобиль Tesla Model S

85 кВч аккумуляторы (550 кг) 400 километров без подзарядки до 100 км/ч за 5,6 секунды, максимальная скорость 200 км/ч Зарядка от 240 В - 4—5 часов


Li = Li⁺ + e⁻ (3.04 B), Co^{3+}/Co^{2+} (1.95 B), Co^{4+}/Co^{2+} (>2 B)

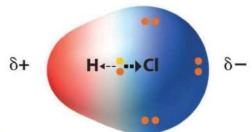
 $\begin{aligned} \text{LiCoO}_2 + 6\text{xC} &\rightarrow \text{Li}_{1\text{-x}}\text{CoO}_2 + \text{xLi}^{+}\text{C}_6 \\ \text{LiFePO}_4 + 6\text{xC} &\rightarrow \text{Li}_{1\text{-x}}\text{FePO}_4 + \text{xLi}^{+}\text{C}_6 \end{aligned}$

ЭДС =
$$E_{\text{ок}}^0 - E_{\text{восст}}^0$$

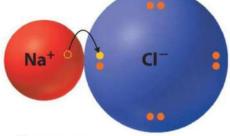
Центр Электрохимической Энергетики (химфак МГУ, ФНМ МГУ, физфак МГУ, Массачусетский Технологический Институт)

Энергетические фабрики - митохондрии

Восстановитель Окислитель Ео, В


$$H_2$$
 $2H^+$ -0,42 $HAД \cdot H + H^+$ $HAД^+$ -0,32 $HAДΦ \cdot H + H^+$ $HAДΦ^+$ -0,32 $HAДΦ \cdot H + H^+$ $HAДΦ^+$ -0,32 $Hat Lambda$ $Hat La$

Ковалентная связь


Неполярная ковалентная связь Связывающие электроны в равной степени принадлежат обоим атомам. На атомах отсутствует заряд.

Полярная ковалентная связь

Электронная плотность смешена к более электроотрицательному атому, на котором возникает частичный отрицательный заряд. На менее электроотрицательном атоме возникает частичный положительный заряд.

Ионная связь

Перенос одного или нескольких валентных электронов от атома металла к атому неметалла. Образуются целочисленно заряженные ионы.

Концепция Льюиса

Согласно Льюису:

Ковалентная связь образуется, если два соседних атома имеют общую электронную пару

A-B

1 электронная пара

одинарная связь

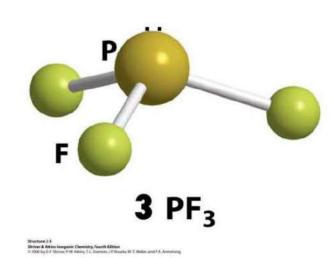
A=B

2 электронные пары

двойная связь

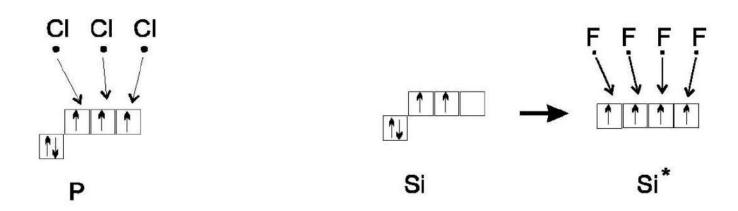
A≡B

3 электронные пары


тройная связь

Графическое представление: структуры Льюиса

Концепция Льюиса


Правило октета:

Каждый атом объединяет электроны с соседними атомами, стремясь к достижению 8-электронной валентной конфигурации

Насыщаемость связи:

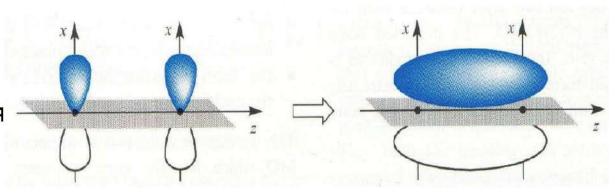
Поделенные электронные пары образуются до тех пор, пока не реализуется октет

Донорно-акцепторное взаимодействие

Донорно-акцепторным называется взаимодействие неподеленной электронной пары атома одной молекулы со свободной орбиталью атома другой молекулы.

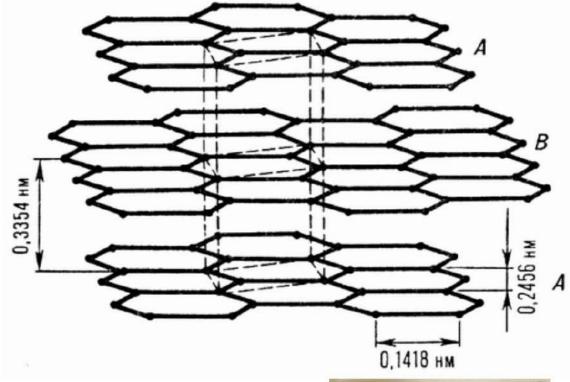
донор предоставляет электронную пару, акцептор – свободную орбиталь

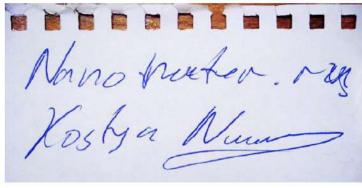
$$NH_3 + H^+ \rightarrow NH_4^+$$


$$H_2O + H^+ \rightarrow H_3O^+$$

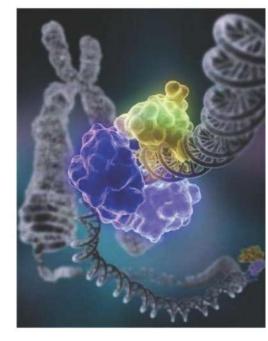
Образование σ и π связи

(С учетом взаимодействия s и р атомных орбиталей)

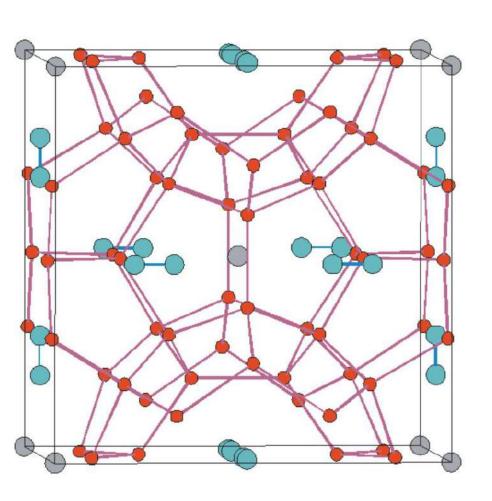



Схема образования связывающей π МО в результате перекрывания двух р АО

Нобелевская премия 2010 г.

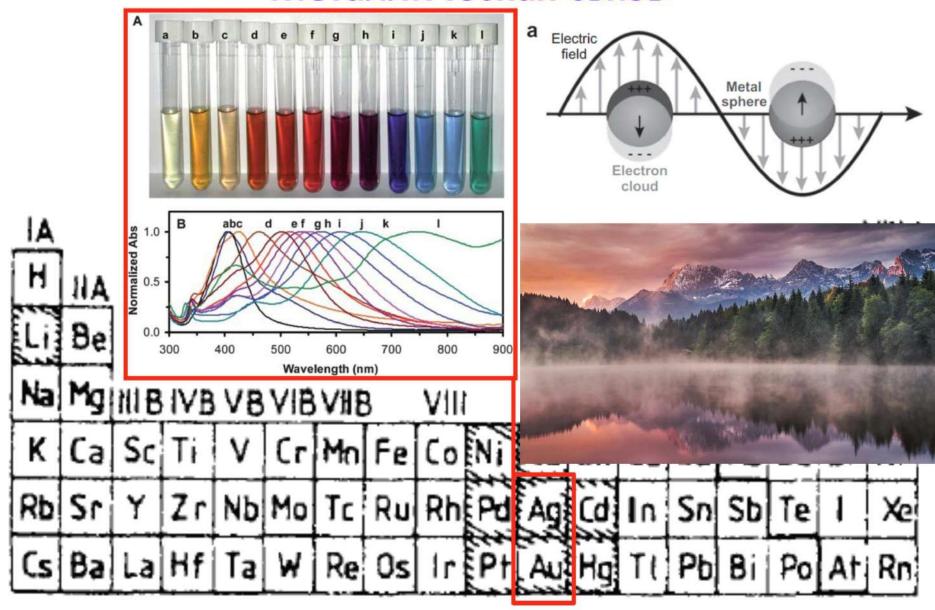


Графит - Графен

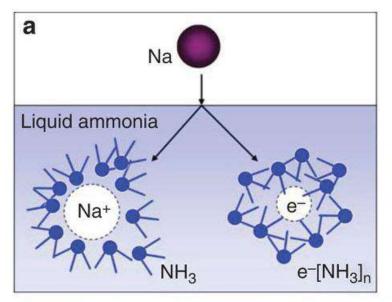

Водородная связь

Для водородной связи необходимо наличие двух полярных ковалентных связей, в образовании одной из которых участвует атом водорода, а другой - электроотрицательный атом (кислород, азот, галоген). Водородная связь считается ключевым взаимодействием в супрамолекулярной химии. Она определяет структуру белков, двойной спирали ДНК, воды и льда, супрамолекулярных ансамблей, полимеров, оказывает влияние на свойства многих растворов.

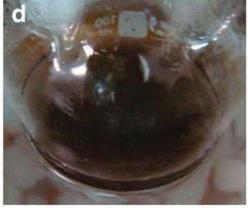
Энергия меняется в широких пределах - от 5 до 100 кДж/моль, однако обычно водородная связь намного слабее ковалентных связей. В зависимости от энергии, водородная связь имеет различный характер - от чисто электростатического (слабые связи) до преимущественно ковалентного (сильные связи).

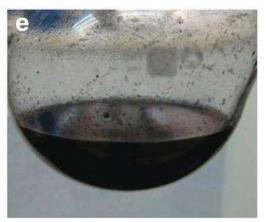

Клатраты

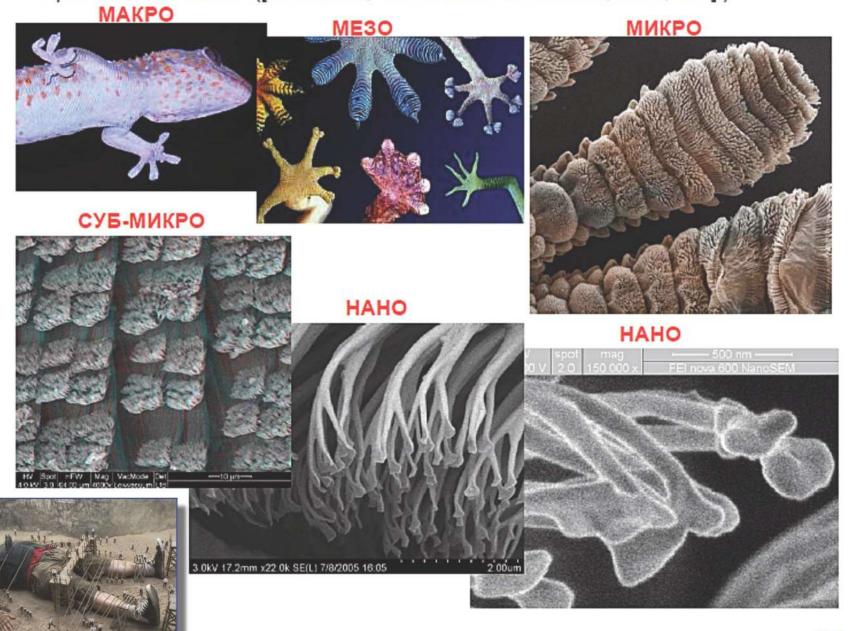
6.5 Cl₂ * 46 H₂O


Металлическая связь

R. Dornhaus. Festkörperprobleme. 1982. XXII. 201–228.

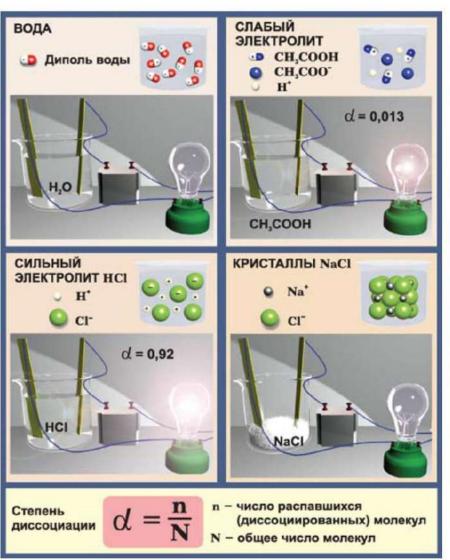

R. Alvarez-Puebla, et al. Small. 2010. 6 (5). 604-610.


Поляроны

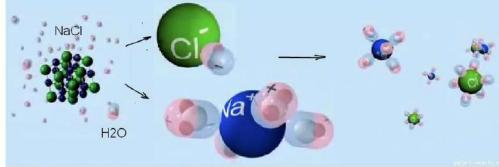

Ван-дер-ваальсовы силы

Ван-дер-ваальсовы силы существуют всегда между атомами и молекулами, но могут быть пренебрежимо малы при наличии ионных или ковалентных взаимодействий

Три типа ван-дер-ваальсовых сил:

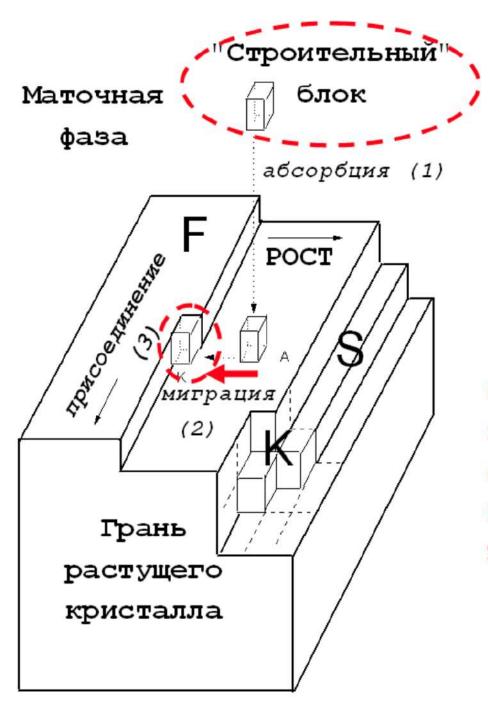

- 1) Диполь-дипольное притяжение взаимодействие постоянных диполей
- Индукционное притяжение взаимодействие постоянного и наведенного диполей
- 3) Дисперсионное притяжение взаимодействие мгновенных диполей

Строение лап геккона ([K. Autumn, et al. American Scientist, 2006, 124])



Растворы и твердая фаза

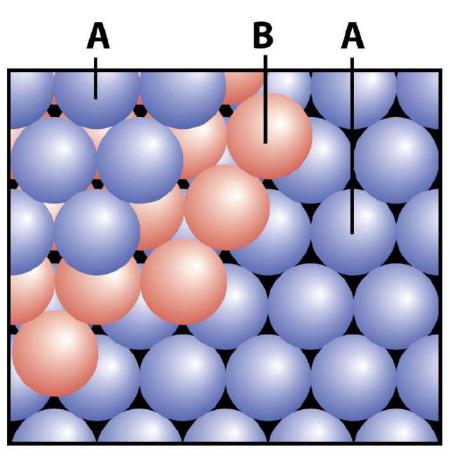
Пересыщенный раствор



Переохлажденный раствор

Стеклянная мозаика: стекло как переохлажденный расплав

- Осветлители: (NH₄)₂SO₄, NaCl, As₂O₃, ...
- Соединения Fe, Cr₂O₃ и CuO зеленый
- CrO₃, NiO, Fe₂O₃ желтый, коричневый
- CuO и CoO синий
- NiO и Mn₂O₃ фиолетовый
- CoO, MnO и Se розовый
- Коллоидные Cu и Au красно рубиновый
- Молочное и опалесцирующее стекло – стеклокерамика или следы расслаивания
- 0.15-0.30% AgCl фотохромные стекла



Кристаллизация

Модель **Косселя-Странского- (Крастанова)** (1927), (0 K!)

Силы молекулярной природы, компенсация ненасыщенных связей, дифференциация мест присоединения по критерию энергетической выгоды

Плотнейшие упаковки

Shriver & Atkins Inorganic Chemistry, Fourth Edition
© 2006 by D. F. Shriver, P. W. Atkins, T. L. Overton, J. P. Rourke, M. T. Weller, and F. A. Armstrong

Последовательность АВАВАВ

ГПУ: гексагональная

плотнейшая упаковка Заполнение пространства 74%

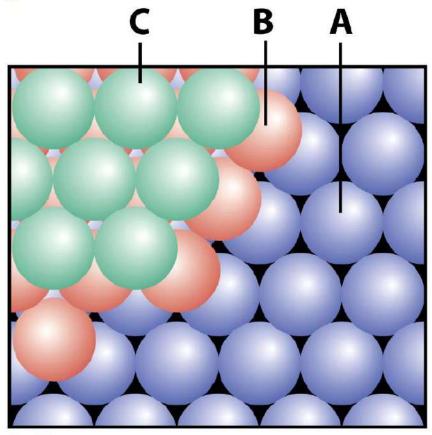


Figure 3-10b

Shriver & Atkins Inorganic Chemistry, Fourth Edition

© 2006 by D. F. Shriver, P. W. Atkins, T. L. Overton, J. P. Rourke, M. T. Weller, and F. A. Armstrong

Последовательность АВСАВС

КПУ: кубическая

плотнейшая упаковка Заполнение пространства 74%

Кристаллические структуры

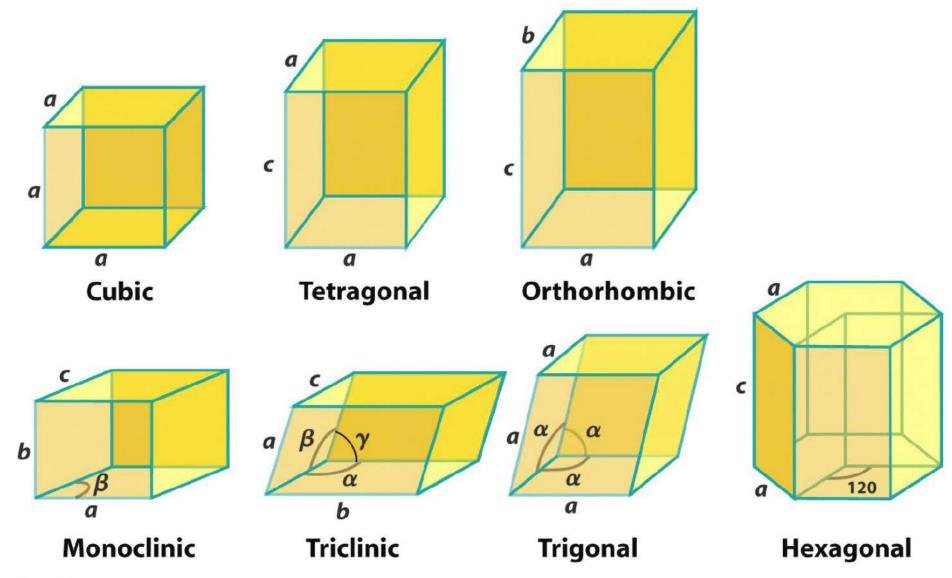
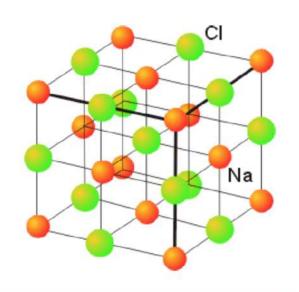
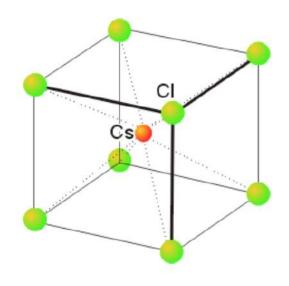
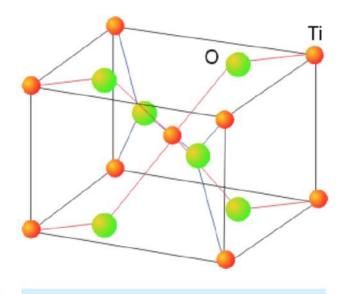





Figure 3-2
Shriver & Atkins Inorganic Chemistry, Fourth Edition
© 2006 by D. F. Shriver, P. W. Atkins, T. L. Overton, J. P. Rourke, M. T. Weller, and F. A. Armstrong

Основные структурные типы

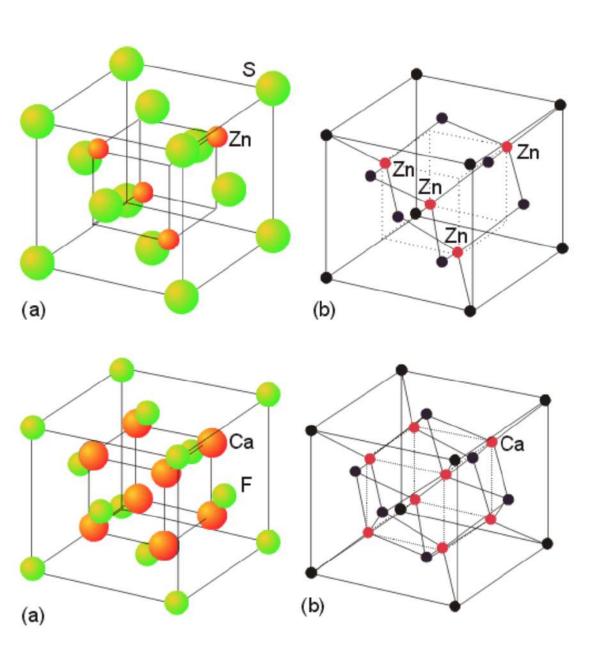
1. NaCl

галогениды, сульфиды, оксиды и нитриды металлов

KCl, FeO, AgBr, EuS, PbS

2. CsCl

галогениды и халькогениды металлов (большие катионы), сплавы


TlBr, CaSe, AuTi, CuZn, LiPb

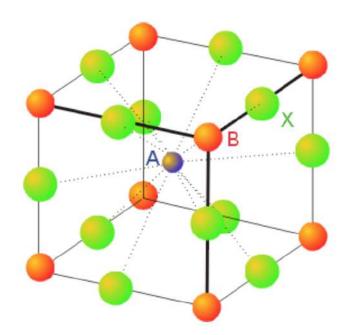
3. TiO₂ (рутил)

оксиды, фториды и нитриды металлов

MgF₂, CoF₂, CrO₂, MnO₂, IrO₂, Ti₂N

Основные структурные типы

4. ZnS (сфалерит) халькогениды, галогениды и фосфиды металлов


CdTe, GdS, MnSe, AgI, AlP

5. CaF₂

фториды, гидриды, оксиды, сплавы

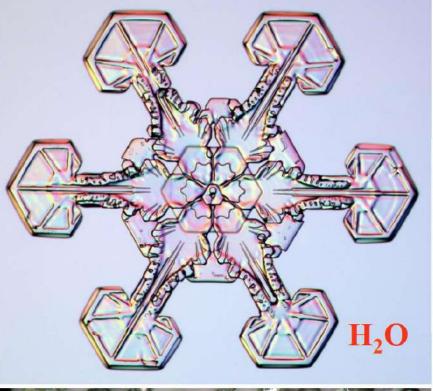
BaF₂, PbO₂, GdH₂, PtAl₂, AuIn₂

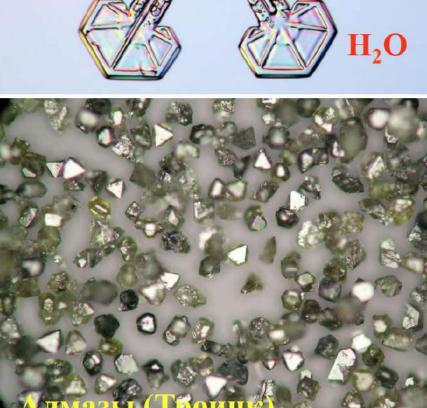
Основные структурные типы

6. СаТіО₃ (перовскит)

Самый распространенный структурный тип для тройных соединений

AgCoF₃, TlMnCl₃, BaCeO₃, BaLiH₃

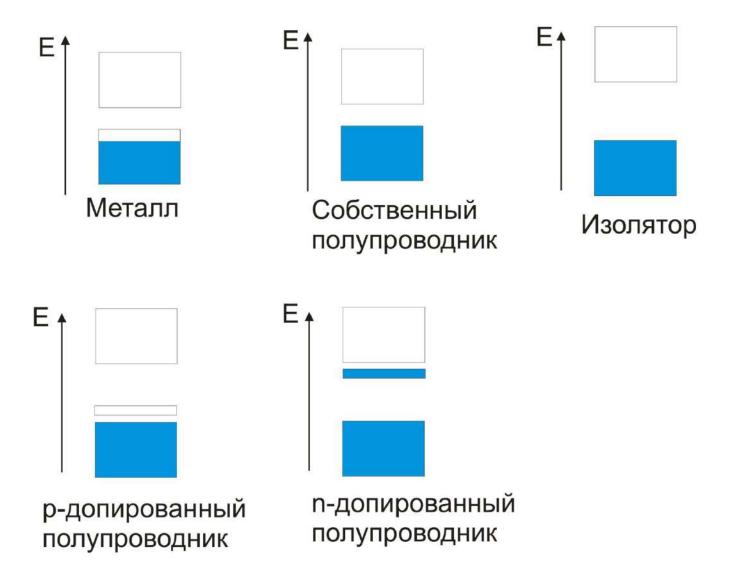

Другие важные структурные типы:


Шпинель (MgAl₂O₄) оксиды и сульфиды

Иодид кадмия (CdI₂) галогениды и халькогениды

Пирит (FeS₂) халькогениды и пниктиды переходных металлов

Арсенид никеля (NiAs) пниктиды, халькогениды, сплавы


Изумруды

Кварц

Металлы, полупроводники и изоляторы

Как контролировать свойства?

Дальтониды

Физикохимический анализ

Николай Семенович Курнаков (1860-1941)

Жозеф-Луи Пруст

непрерывный состав

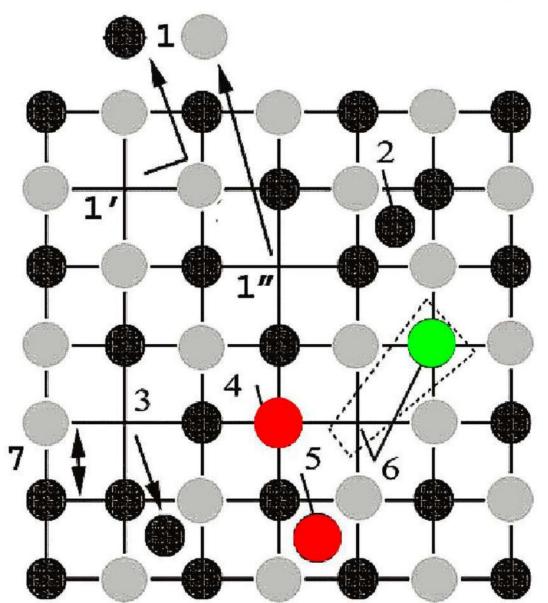
Клод Луи Бертолле (1748 - 1822)

смеси, а не индивиды

Направление химических реакций определяется массой, свойствами реагентов и условиями реакции. Состав продуктов должен изменяться быть непрерывно, переменным.

1801 - 1808 г.г.

Закон постоянства состава: состав не зависит от способа получения


(1754 - 1826)

Джон Дальтон (1766-1844)

Закон кратных соотношений.

Точечные дефекты

1', 1" - вакансии,

1 – дефект по Шоттки,

2 – собственный

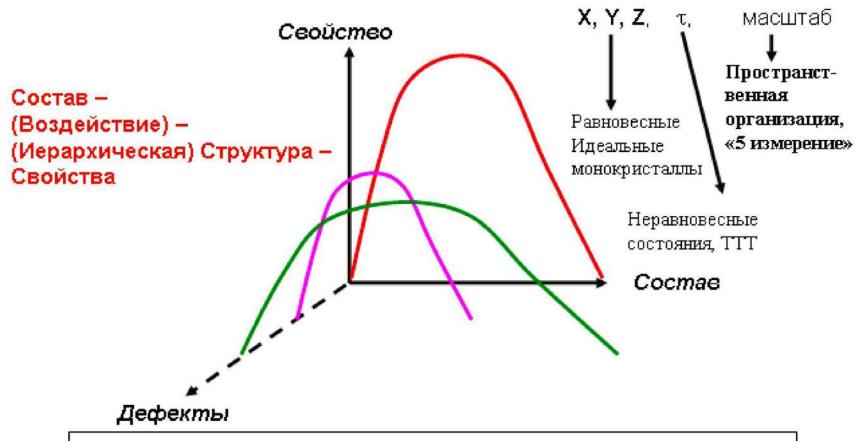
междоузельный атом,

3 – дефект по

Френкелю,

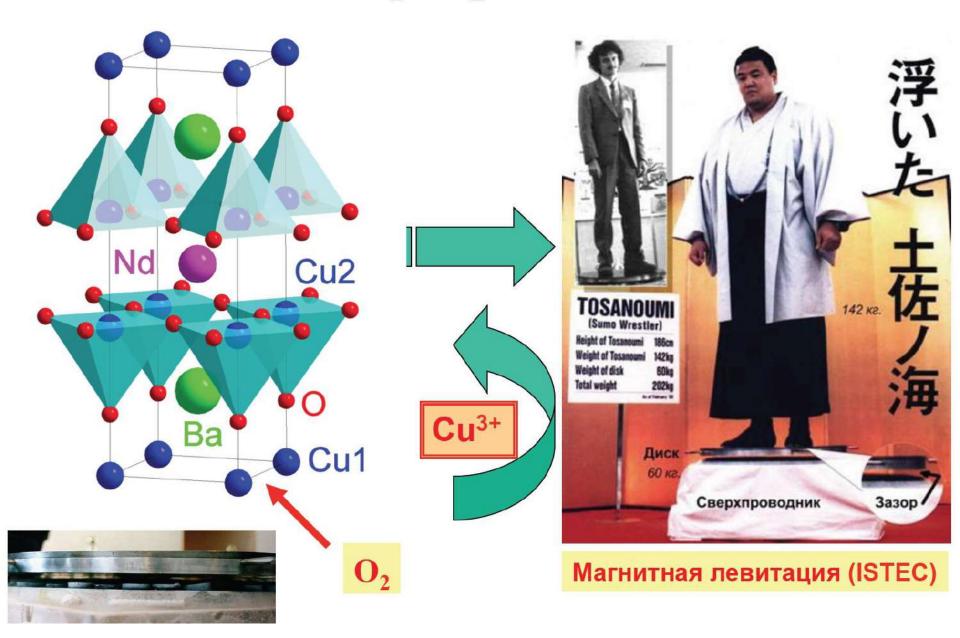
4 – дефект замещения,

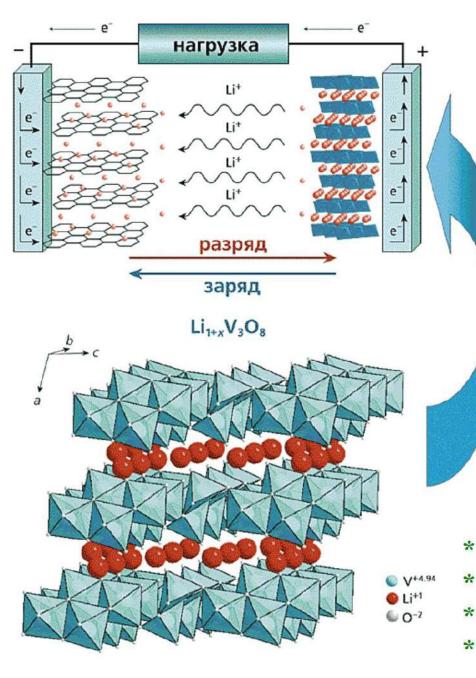
5 – дефект внедрения,


6 – гетеровалентное

замещение,

7 – антиструктурные дефекты


Свойства



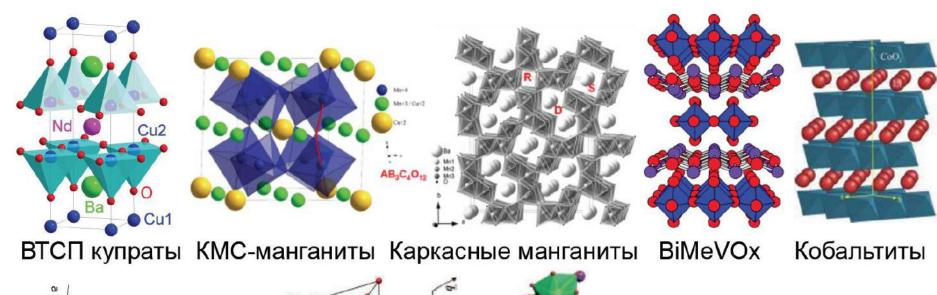
 ${f Beщество}\ (cocmae) - {f \Phia3a}\ (cocmae,\ cmpуктура,\ фундаментальные\ ceoйcmea) - {f MATEPUAЛ}\ (cocmae,\ cmpуктура,\ дефекты,\ фундаментальные\ u\ cmpуктурно-чувствительные\ ceoйcmea)$

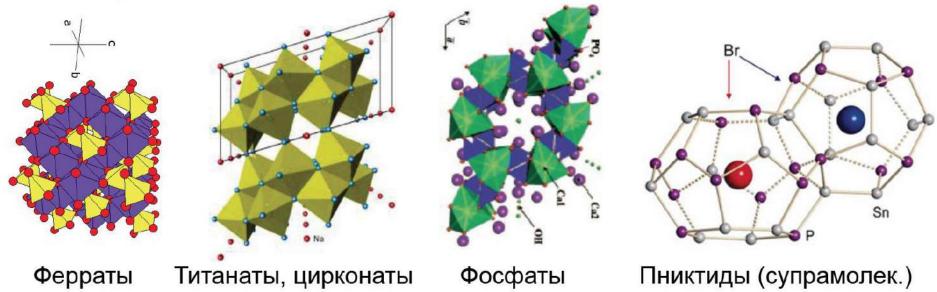
Сверхпроводимость

Ионная проводимость

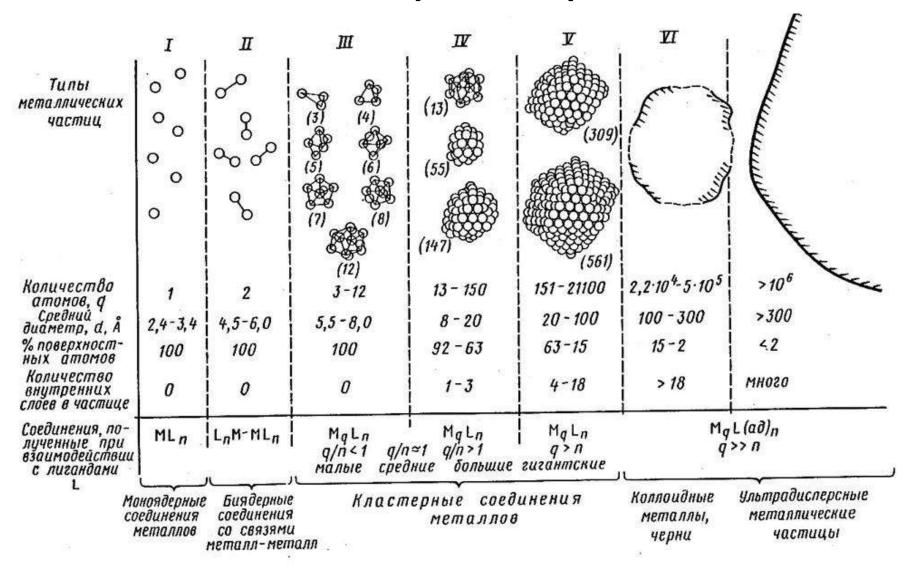
-Nа аккумуляторы
-кислородные сенсоры
-топливные ячейки
(кислород- и протонпроводящие твердые
электролиты для
водородной энергетики)

- * 3d элемент, смешанная ст.ок.
- * Структурные плоскости, каналы
- * Подвижные ионы Li⁺, «H⁺» (O²⁻, F-)
- * Нестехиометрия



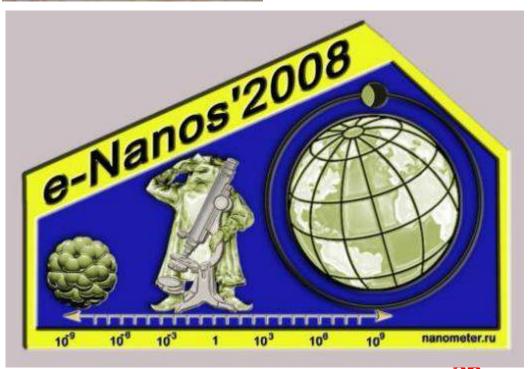

фотолюминесценция a — в кристаллическую решетку основы H введен активатор A; b — в кристаллическую решетку основы H введены активатор A и сенсибилизатор B.

Электролюминесценция (дисплей іМас)

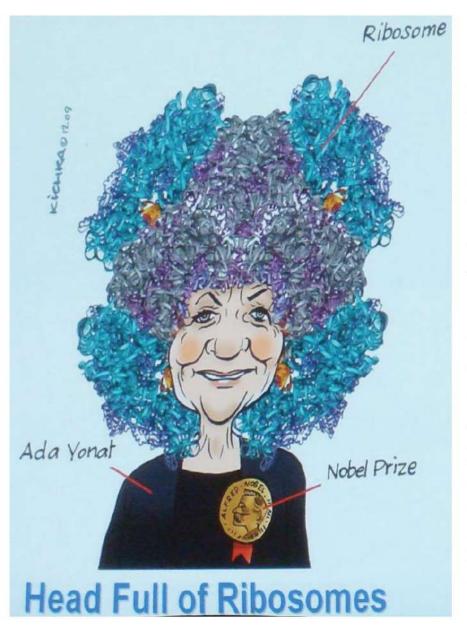

Люминесценция

Шкала размеров

«нано» - «гном, карлик», одна миллиардная метра

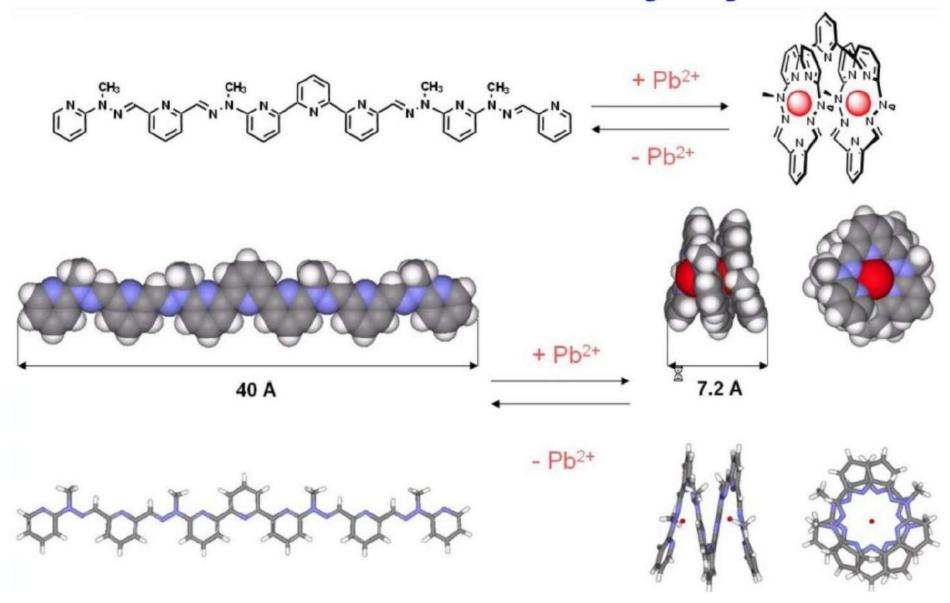


Насколько мал нанометр?



Когда — то, говорят, Чингис-хан приказал каждому из своих воинов принести по камню к его шатру. Приказано-сделано. Выросла гора. А что если каждый человек на земном шаре принесет по одной единственной квантовой точке (диаметр 10 нм, плотность материала 7 г/см³) и положит ее около штаб-квартиры Государственной Корпорации «Роснанотех» в кучу, то какую массу будет иметь эта куча?

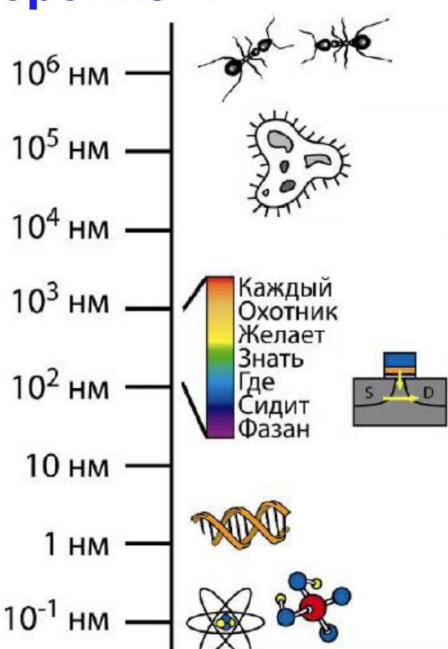
(Ответ: 20 миллиардных долей грамма)


Почему автор эмблемы расположил гнома между фуллереном и Луной? (Ответ: отношение размера гнома к размеру молекулы фуллерена примерно равно отношению размера Луны к размеру гнома)

Последний кадр из лекции профессора Ады Йонат «View into the ribosomal exit tunnel», Нобелевская премия по химии в 2009 г. (VIII биофизический конгресс, Будапешт, автор фото – А.А.Семенова)

«Рибосома — важнейший немембранный органоид живой клетки сферической или слегка эллипсоидной формы, диаметром 100 —200 ангстрем, состоящий из большой и малой субъединиц. Рибосомы служат для биосинтеза белка из аминокислот по заданной матрице на основе генетической информации, предоставляемой матричной РНК, или мРНК.» (Википедия)

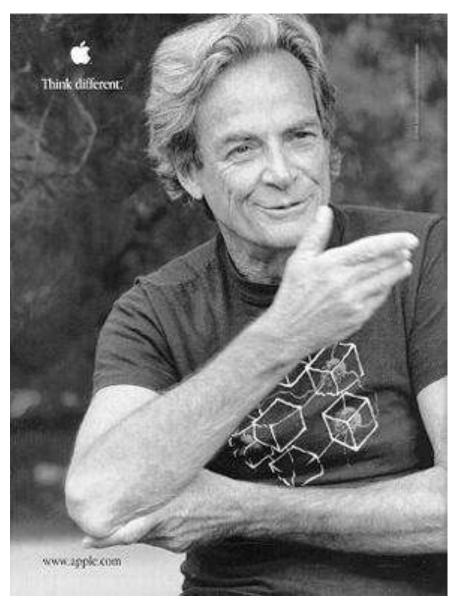
Химический «наномускул»


(Жан Мари Лен, Нобелевская премия)

«Пятое измерение»?

- -Размер по одному из измерений < 100 нм
- -Новые по сравнению с объемным телом свойства
- -Высокая реакционная способность
- -Квантовые и туннельные эффекты
- -Самоорганизация и самосборка
- -Специфическое взаимодействие с живыми системами

Ван-дер-ваальсова водородная металлическая ковалентная ионная

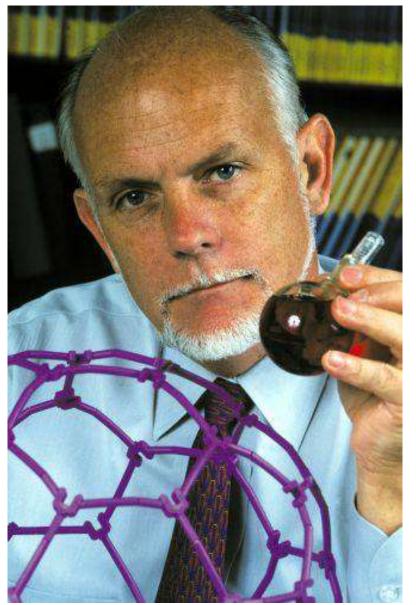

(И.Колесник, ФНМ МГУ),

Сам термин «нанотехнология» предложен Норио Танигучи в 1974 г. В 1986 г. вышла книга Э.Дрекслера «Машины созидания: наступление нанотехнологической эпохи» (нанороботы, «серая слизь» Grey Goo). В этом же году Герд Биннинг и Хайнрич Роер (лаборатории IBM, Цюрих) получили Нобелевскую премию за созданный ими в 1981 г. первый туннельный микроскоп. Признаны наблюдения проф. Ииджимы (Nature, 1991 г.) многостенных углеродных нанотрубок, найденных продукте дугового разряда между графитовыми электродами. Нобелевская премия по химии за фуллерены была дана в 1996 г. Ричарду Смолли, Роберту Керлу и Харолду Крото.

... Все это - существенно рафинированная краткая история нанотехнологий, пришедшая к нам из США.

Возможные причины «нанобума»

- Появление принципиально новых методов диагностики ноноразмерных объектов (современная электронная микроскопия, туннельная и атомно-силовая микроскопии)
- Осознание того, что наноматериалы обладают специфическими магнитными, электрическими, оптическими и др. свойствами, связанными с проявлением квантовых эффектов
- Открыт путь к миниатюризации технических устройств и огромной экономии ресурсов



Ричард Фейман (Richard Feynman)

29 декабря 1959 г. Нобелевский лауреат Р.Фейнман прочитал в Калифорнийском университете свою знаменитую рождественскую лекцию «Там, внизу, много места»

Два подхода к созданию наноматериалов: «снизу-вверх» и «сверху-вниз»

<u>Нанотехнологии</u> - совокупность методов и приемов, применяемых при изучении, проектировании, производстве использовании структур, устройств систем, включающих целенаправленный модификацию контроль и размера, интеграции и взаимодействия наномасштабных составляющих их (1-100 нм) для получения элементов объектов новыми химическими, биологическими физическими, свойствами (ГК «Роснанотех»).

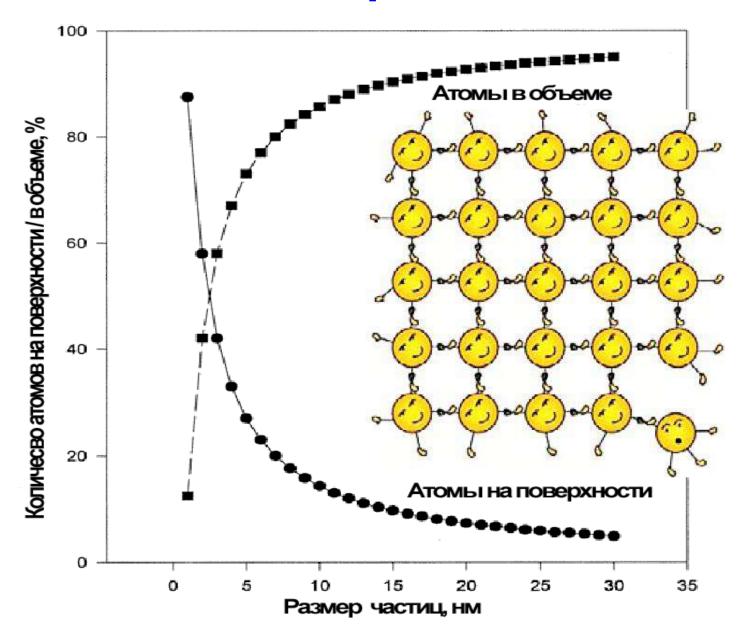
Ричард Смолли (Richard Smalley)

В декабре 2003 г. Нобелевский лауреат Ричард Смолли также резко критиковал подходы Дрекслера на страницах журнала «Chemical and Engineering News»

Р.Смолли: «...если бы **ВОЗМОЖНОСТЬ** нанороботов саморазмножения существовала, то нанороботу, способному мультиплицировать себя CO скоростью силлион атомов в секунду, потребовалось бы 20 миллионов лет, чтобы накопить одну унцию продукта саморазмножения. Однако и этот скромный ПО результатам процесс невозможен, т.к он потребовал бы огромных энергетических затрат...»

Отечественные научные школы

- академик В.А. Каргин, становление науки о полимерах как интегрированной области знания
- академик П.А. Ребиндер, становление и развитие многих областей коллоидной химии
- академик Б.В. Дерягин, учение о поверхностных силах и их влиянии на расклинивающее давление и свойства тонких жидких пленок
- академик И.В. Тананаев, впервые предложивший дополнить классические диаграммы «состав- структура-свойство» координатой дисперсности
- академик И.И.Моисеев и М.Н.Варгафтик, создание «гигантских кластеров» палладия, ядро которых насчитывает около 600 атомов металла
- пионерские работы В.Б. Алесковского по развитию методов «химической сборки»
- создание и внедрение в атомную энергетику оригинальных технологий получения ультрадисперсных (нано-) порошков, выполненное группой советских ученых под руководством И.Д. Морохова
- Вице-президент РАН, Нобелевский лауреат Ж.И. Алферов, полупроводниковые гетероструктуры



Вклад поверхности

«Наноуровень» структуры (1 - 100 нм) существует всегда, и если он предопределяет свойства материала, то говорят о наноматериале.

Волшебный нанокатализатор (Россия)

Бросок кобры - 1

Выстрел нанитами

Благодарности

К.А.Солнцев, Ю.Гогоци, П.Вайс, В.И.Путляев, А.А.Елисеев, А.В.Лукашин, А.А.Семенова, Н.А.Браже, Г.В.Максимов, А.Б.Тарасов, К.С.Напольский, Д.М.Иткис, Р.Б.Васильев, С.Г.Дорофеев, И.А.Веселова,

Д.И.Менделеев