

Фотоконкурс таблиц Д.И.Менделеева, посвященный Международному году Периодической таблицы химических элементов Работа призера II степени Оганесян Екатерины Сергеевны (к.э.н., доцент, Институт химии и проблем устойчивого развития, РХТУ имени Д.И.Менделеева, г.Москва)

Периодическая система элементов Д. И. Менделеева. Таблица? Пирамида!

Идея «Пирамидки Менделеева» возникла случайно, когда мы занимались со школьником, отставшим от программы. Дети умеют задавать внешне простые вопросы, в которых на деле кроется глубокий смысл. Почему первый период непарный, а остальные идут парами? Почему в таблице, даже в развернутой форме, есть пропуски? Почему s-элементы идут по два, p-элементов всегда шесть, d-элементов десять, а f-элементов четырнадцать? Каким будет следующий, восьмой период?

Можно заучить периодический закон, строение и порядок атомных орбиталей, формулы из учебника, но чтобы человек уловил внутреннюю зависимость, нужно не заучивание, а понимание, и мы стали смотреть разные варианты периодических систем. Прямоугольные, треугольные, спиральные — все они имели явные натяжки, связанные с двумерностью, плоскостным изображением. Когда Дмитрий Иванович упорядочивал элементы, он раскладывал на столе старые визитные карточки, на обороте которых были записаны название элемента, атомный вес и формулы основных соединений, поэтому неудивительно, что в итоге получилась таблица. Но периодический закон многогранен и многомерен. Для его отображения двух измерений мало. Мы сделали трехмерную пирамиду.

Нумерация периодов парная, т.к. литий и бериллий вынесены во второй период. Все остальные *s*-элементы приводятся не в начале привычного периода, а ставятся в конец предшествующего. Пирамида вмещает 120 элементов, распределенных по 8 периодам.

Третий период начинается с бора: *p*-элементы последовательно идут по периметру, заканчиваясь неоном, а завершают период натрий и магний, расположенные в центре. Аналогичным образом и в остальных периодах элементы следуют сначала по внешнему периметру, затем по внутреннему слою (слоям) и заканчиваются в середине.

С одной стороны, все привыкли к нумерации орбит, предложенной Бором еще в прошлом веке, и расположению щелочных элементов в первых столбцах таблицы. С другой стороны, такие представления не должны быть догмой. Если сохраняется периодичность и соблюдаются все физически и химические законы, то нумерация периодов, показанная на фото 2, вполне оправданна. Подобная логика используется в некоторых плоскостных треугольных вариантах периодической системы. Плюс ее в том, что она позволяет избавиться от пропусков и пустых ячеек.

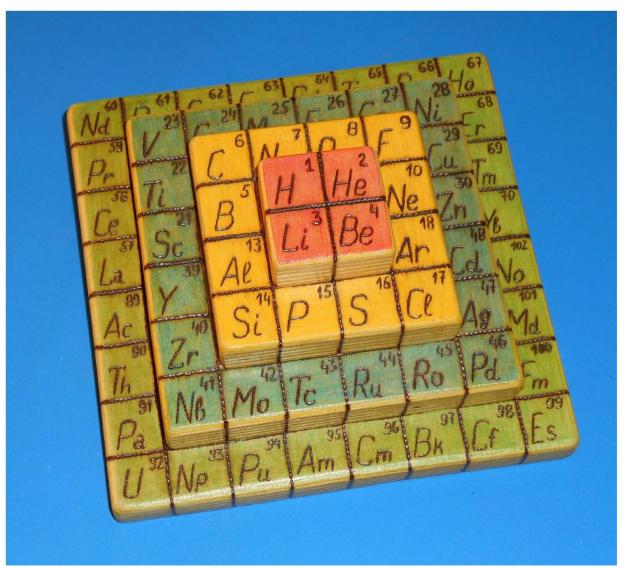


Фото 1. Пирамида Менделеева, 2007 г. (фанера, цветные карандаши, выжигатель, лак)

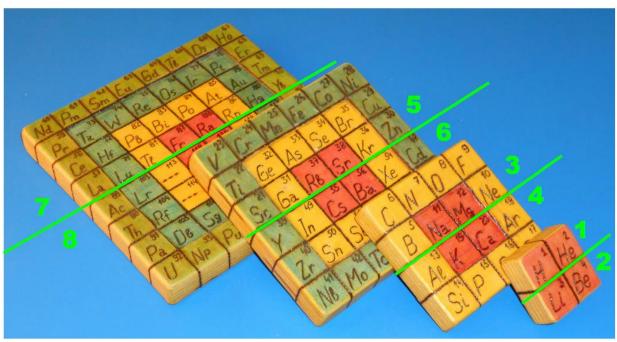


Фото 2. Деление элементов по парным периодам (1-2, 3-4, 5-6, 7-8) и типам элементов (цвет фона: s-элементы — розовый, p-элементы — желтый, d-элементы — синий, f-элементы — зеленый)

Чтобы подчеркнуть порядок следования элементов в каждом периоде от периметра к центру, уже с другими учениками мы усовершенствовали пирамиду, добавив последовательное смещение слоев внутри периода по вертикальной оси вниз.

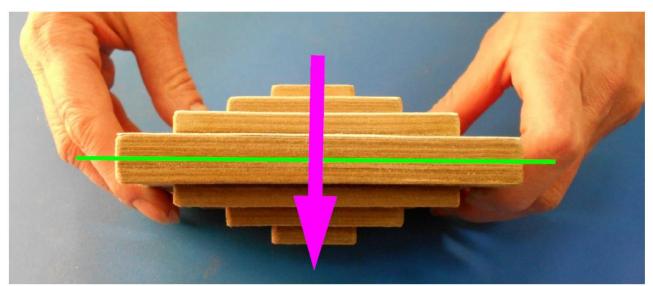


Фото 3. Усовершенствованная пирамида Менделеева в собранном виде, вид сбоку, 2017 г. (многослойный картон, столярный клей)

Пирамида приобрела форму кристалла, получив симметрию еще и относительно горизонтальной плоскости и упростив понимание порядка, в котором периоды, слои и элементы следуют друг за другом. Переход внутри периода от электронной оболочки f последовательно к d-, p- и s-оболочкам сопровождается понижением, уходом в глубину.

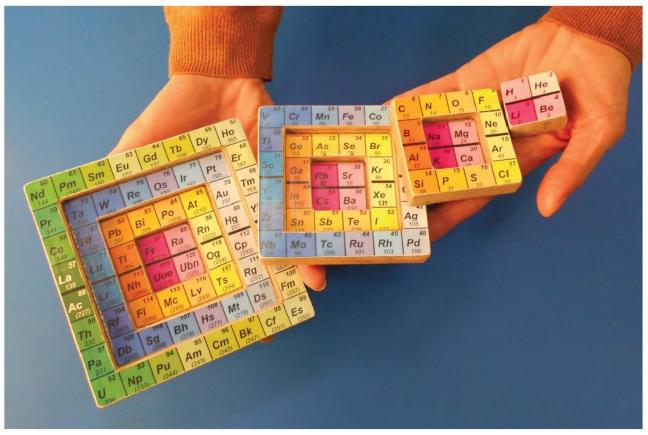


Фото 4. Усовершенствованная пирамида Менделеева, вид сверху

Использование цветного принтера позволило плавно менять цвет фона внутри слоя (чем больше номер, тем светлее фон). К пирамиде можно создавать сопроводительные схемы в электронном виде, выводить их на проектор, вставлять в презентации и пособия.

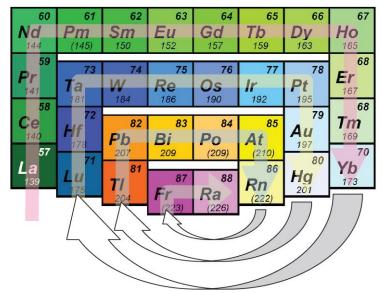


Рис. 1. Разбор строения 7-го периода по нашей нумерации, движение по спирали

Плюсы пирамидальной периодической системы:

- Иллюстрируется повторяемость в строении периодов. В пирамиде все они парные это дополнительный аспект периодичности, которого нет в традиционных таблицах. Периоды 1 и 2 содержат только *s*-элементы (по 2); периоды 3 и 4 начинаются с *p*-элементов и завершаются *s*-элементами; в периодах 5 и 6 последовательно расположены *d*-, *p* и *s*-элементы; периоды 7 и 8 включают в себя *f*-, *d*-, *p* и *s*-элементы. Восемь периодов заключают в себе 120 элементов.
- Суммарное количество элементов в парных периодах удобно раскладывается по квадратам: 4, 16, 36 и 64 соответственно.
- Не составляет труда продолжить пирамиду, мысленно добавив 9 и 10 периоды. Количество g-элементов (по 18 в каждом из периодов) можно оценить, просто пересчитав клеточки в новом внешнем периметре. При этом образуется новый квадрат 10x10, и, если когда-нибудь 9 и 10 периоды заполнятся, система будет насчитывать 220 элементов.
- В пирамиде нет никаких пропусков, вставок и смещений.
- Лантан La и актиний Ас занимают свои места в начале нового периметрального слоя. Список лантаноидов и актиноидов логично заканчивается иттербием Yb и нобелием No, а не лютецием Lu и лоуренсием Lr, которые относятся не к f-, а к d-элементам. До сих пор даже официальные таблицы ИЮПАК грешат тем, что располагают в третьем столбце ячейки 57 и 89, хотя эти места по всей логике должны принадлежать лютецию (71) и лоуренсию (103). Удел лантаноидов и актиноидов в привычной частично свернутой форме таблицы быть вставкой между вторым и третьим столбцами, а не занимать чужие ячейки. В пирамиде такой проблемы нет.

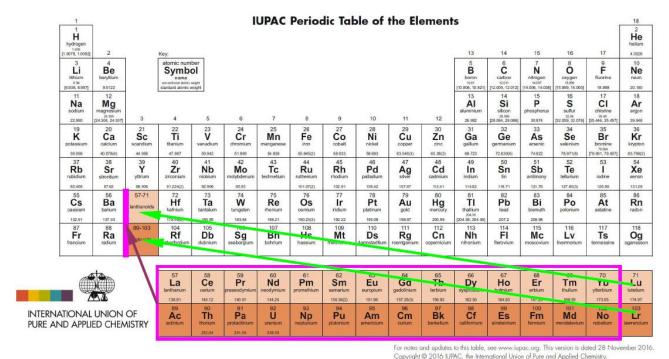


Рис. 2. Отображение лантаноидов и актиноидов в официальной таблице ИЮПАК, 2016 г.

В пирамиде наблюдается периодичность свойств элементов, расположенных друг под другом на одной вертикальной оси. Также имеется сходство свойств при симметричном расположении элементов относительно линии, разделяющей периоды. Так, на одной вертикальной оси в пирамиде находятся водород, натрий, рубидий и франций, а симметрично им в парных периодах находятся литий, калий, цезий и унуненний Uue. Аналогичным образом по двум вертикальным осям расположены галогены: F, Cl, Br, I, At и теннессин Ts. По двум другим вертикальным осям по соседству находятся благородные газы Ne, Ar, Kr, Xe, Rn и недавний получивший имя оганесон Оg. И хотя гелий не расположен на той же вертикальной оси, что и неон, периодичность свойств демонстрируется тем, что оба элемента занимают последнее место в соответствующей строке.

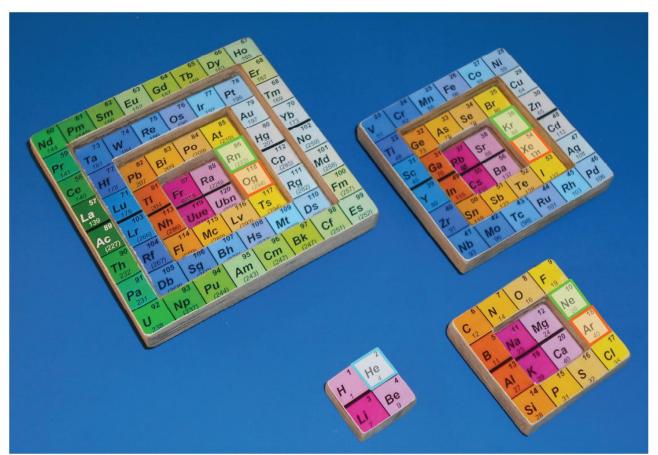


Фото 5. Расположение благородных газов в пирамиде Менделеева

- Спуск по вертикальной оси вниз отображает рост номеров периодов.
- Отпадает необходимость в отображении элементов по группам с выравниванием в столбце вправо или влево – эти ухищрения, до сих пор используемые в короткой форме таблицы, скорее запутывают, чем вносят ясность.
- Чем дальше элемент от центральной оси пирамиды, тем больше вместимость заполняющейся электронной оболочки.

Ученик, делавший первую пирамидку, давно закончил школу, но случайно родившаяся идея продолжает развиваться. Использование старой и новой пирамидок вместе позволяет показать, сколько изменений произошло за 10 лет, какие получены новые элементы, какие имена им дали. Есть идея 4-мерной периодической системы на основе квантовых чисел. Физически ее изготовить сложно, т.к. детали вряд ли удастся скрепить, но решением может стать визуальная компьютерная модель. Одно понятно точно: периодичность можно иллюстрировать разными средствами, и таблица — не единственный вариант. Для изучения островов стабильности лучше всего подойдет декартова система координат с количествами протонов и нейтронов по осям. В качестве справочного материала для решения задач годится плоскостная развернутая таблица. А на этапе изучения периодического закона лучше дать в руки то, что можно потрогать, собрать и разобрать. Яркое, объемное, но при этом логичное и хорошо иллюстрирующее разные аспекту периодичности — пирамиду.

Дополнительно от автора: «На обороте фанерной пирамидки Менделеева у нас сохранилось написанное маркером пожелание успехов в изучении химии — его сделал Юрий Цолакович Оганесян, когда приезжал к нам в РХТУ им. Менделеева в апреле прошлого года с лекцией для студентов и школьников».

