

Математика для школьников 7 – 11 класса (заочный тур) Задача 6. Икосаэдрические фуллерены и индексы хиральности

Любой икосаэдрический фуллерен можно представить в виде «выкройки» на графеновой плоскости (рис. 1). Общее число атомов при этом определяется по формуле $\mathbf{N} = 20 \Big(\mathbf{n}^2 + \mathbf{n} \mathbf{m} + \mathbf{m}^2 \Big)$, где натуральные числа \mathbf{n} и \mathbf{m} – индексы хиральности – задают радиусвектор $\vec{\mathbf{R}} = \mathbf{n} \vec{\mathbf{r}}_1 + \mathbf{m} \vec{\mathbf{r}}_2$, длина которого равна стороне треугольника «выкройки».

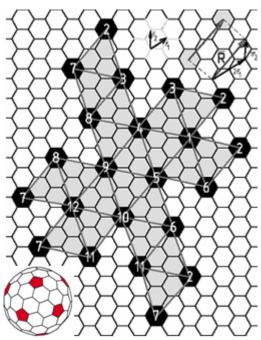


Рис. 1. Пример развертки икосаэдрического фуллерена C_{140} на графеновой плоскости ($m{n}=2, m{m}=1$); если склеить вершины треугольников с одинаковыми номерами, получится фуллерен. На графеновой плоскости отмечены единичные векторы $m{r}_1$ и $m{r}_2$ и показан задающий развертку вектор $m{\vec{R}}=2m{\vec{r}}_1+1m{\vec{r}}_2$.

- 1. Рассмотрим множество икосаэдрических фуллеренов (ряд $\mathbf{F_c}$), имеющих одинаковую сумму индексов хиральности $\mathbf{c} = \mathbf{n} + \mathbf{m}$. Выразите число атомов и индексы хиральности через \mathbf{c} для икосаэдрических фуллеренов этого ряда, имеющих минимальное \mathbf{N}_{min} и максимальное \mathbf{N}_{max} число атомов в молекуле. (4 балла)
- 2. Запишите все члены ряда \mathbf{F}_c , включающего в себя самый маленький икосаэдрический фуллерен. (1 балл)
- 3. Для ряда \mathbf{F}_{c} , включающего бакибол C_{60} , рассчитайте \mathbf{N}_{min} и \mathbf{N}_{max} . Сколько еще и каких (**N**) икосаэдрических фуллеренов содержит этот ряд? (**2** балла)
- 4. Каково число икосаэдрических фуллеренов в ряду F_{2017} ? Найдите N_{min} и N_{max} для этого ряда. (3 балла)

Считать фуллерены (n,m) и (m,n) одним и тем же членом ряда.

Всего - 10 баллов